Planung und Betrieb von SBR-Anlagen

Inhalt

- 1. Historie
- 2. Stand des Wissens
- 3. Anlagenkonfiguration
- 4. Bemessung
- 5. Zykluszeitprogramm
- 6. Steuerungstechnische Besonderheiten
- 7. Resümee

- 1879 zum ersten Mal "fill and draw" Systeme
- 1893 Thomas Wardle entdeckte Rückstand bei Abwasserbelüftung
- 1914 Arden und Lockett untersuchten den Rückstand und nannten ihn Belebtschlamm
- Noch im selben Jahr erste Aufstauanlage in Salford

Phase	Zeit
Füllen	1,0 h
Reaktion	3,5 h
Absetzen	0,5 h
Klarwasserabzug	1,0 h

1915 Kläranlage Milwaukee (USA)

Alle gebauten Kläranlagen mit Aufstaubetrieb wurden nach 1920 wieder zu Durchlaufanlagen umgebaut.

• Amerikaner *Irvine* griff diskontinuierliche Betriebsweise auf und nannte Aufstauanlage, die aus einem Vorspeicher beschickt wurde:

SBR - Sequencing Batch Reaktor

SBR Robert L. Irvine, Ph.D., P.E.

President

SBR Technologies, Inc. 1930 East Edison Road

South Bend, Indiana 46617 U.S.A.

Email: 74653.1613@compuserve.com

Telephone: 219-233-1105 FAX: 219-233-1241

 Australier *Goronszy* setzte eine Trennwand in den Einlaufbereich, was einen Selektionseffekt zur Folge hatte. Er nannte sein Verfahren CAST (Cycling Activated Sludge Technology)

MERVYN C. GORONSZY PRESIDENT

TTI

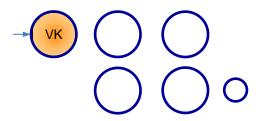
TRI TECH, INC.
Wastewater Treatment Services

TISCHLERWEG 42 A-5071 SIEZENHEIM AUSTRIA TEL (43) 662 85 07 55 FAX (43) 662 85 66 89 JULIUS - WELSER STRASSE 15 A-5020 SALZBURG AUSTRIA TEL (43) 662 43 49 01 FAX (43) 662 43 49 01 8

- Firmen wie Cyclar und Mecana importierten amerikanische SBR-Technologien.
- In MV wurden die ersten SBR-Anlagen in der ersten Hälfte der 90er Jahre gebaut.
- Annahme: SBR-Anlagen nur in bestimmter Größenordnung wirtschaftlich – hat sich nicht bewahrheitet.

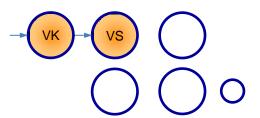
Stand des Wissens

- 1997 DWA Merkblatt 210 Belebungsanlagen mit
 Aufstaubetrieb novelliert in 2009
- 2001 Technical Report vom IWA "Sequencing Batch Reactor Technology" von Irvine/Goronszy/Wilderer
- SBR-Weltfachtagung in den Jahren 1996, 2000 und 2004



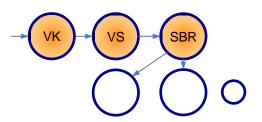
Das ATV-DVWK Merkblatt 210 unterscheidet 3 Varianten von Aufstauanlagen nach der Art der Beschickung:

- Kontinuierliche Abwasserzuführung in ein oder mehrere Aufstaubecken
- Schubweise Beschickung von Aufstaubecken ohne
 Vorspeicher und demzufolge mit mindestens 2
 Aufstaubecken
- Schubweise Beschickung von Aufstaubecken <u>aus einem</u>
 Vorspeicher mit einem oder mehreren Aufstaubecken


Mechanische Vorreinigung

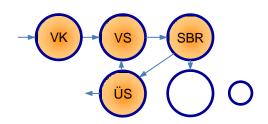
- Keinen Unterschied zu kontinuierlich beschickten Kläranlagen
- Kläranlagen > 1.000 EW mit Rechen und Sandfang
- Kläranlagen < 1.000 EW hat sich bei einigen Betreibern eine Vorklärung als alleinige mechanische Vorreinigung bewährt

Vorspeicher

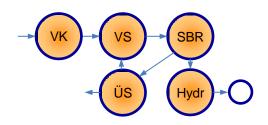


Das Beschicken eines SBR-Beckens aus einem Vorspeicher bringt folgende Vorteile mit sich:

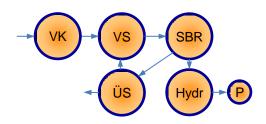
- Entkopplung von Zulaufhydraulik und biologischer Reinigung.
 Dadurch sind besondere Selektionsstrategien möglich.
- 2. Durch sequenzielles Beschicken Erzeugung eines Substratgradienten.
- 3. Je kleiner ein Einzugsgebiet, desto ausgeprägter ist die Tagesganglinie, desto wichtiger wird ein Vorspeicher.


SBR-Becken

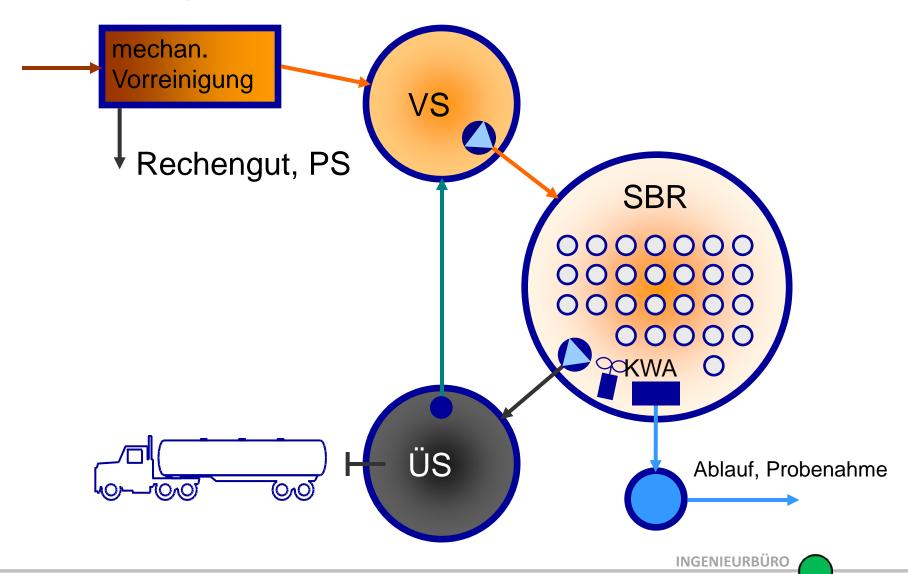
- In SBR-Becken Abwasserreinigung und Schlamm/ Klarwasser -Trennung
- In der kommunalen Abwasserbehandlung richtet sich die Anzahl der SBR-Becken nach:
 - 1. Ausbaugröße der Kläranlage
 - 2. Fremdwasseranteil (Dimensionierung biologisch/hydr.)
 - 3. Vorhandensein von Vorspeichervolumen


ÜS-Schlammspeicher

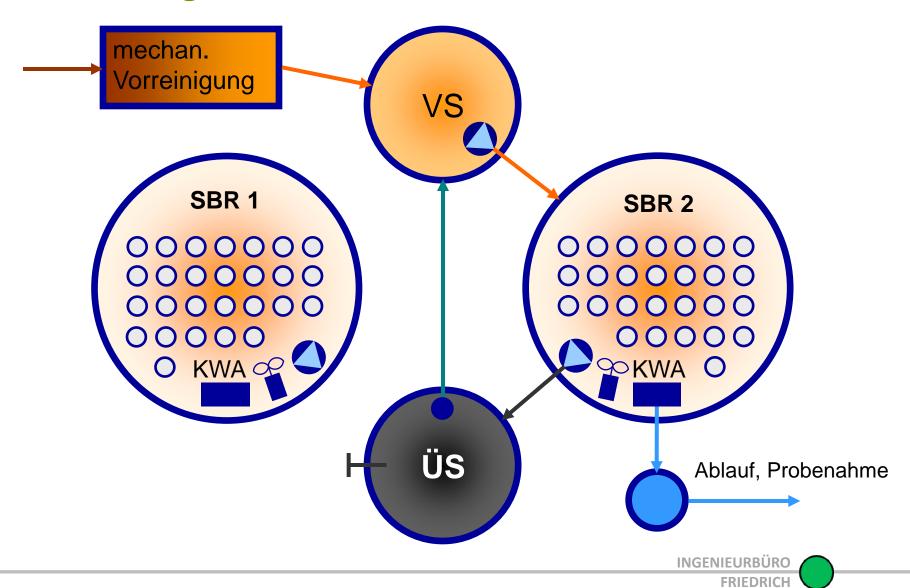
- Zwischenspeicherung und Eindickung von Überschussschlamm
- Lagerkapazitäten von ca. 3 Monaten
- Eindickung von 2,5 3,0 % möglich
- Trübwasserrücklauf in Vorspeicher



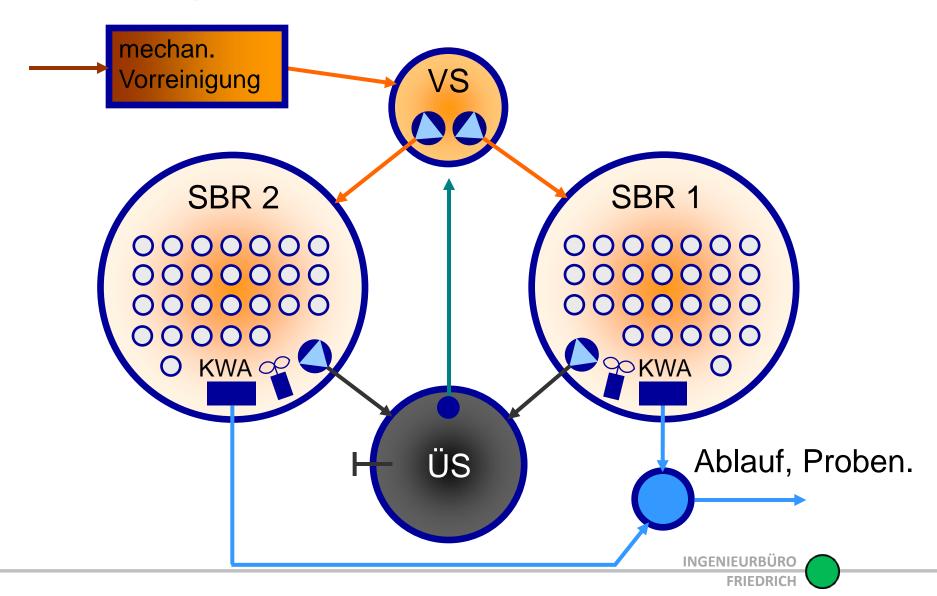
Hydraulischer Ausgleich

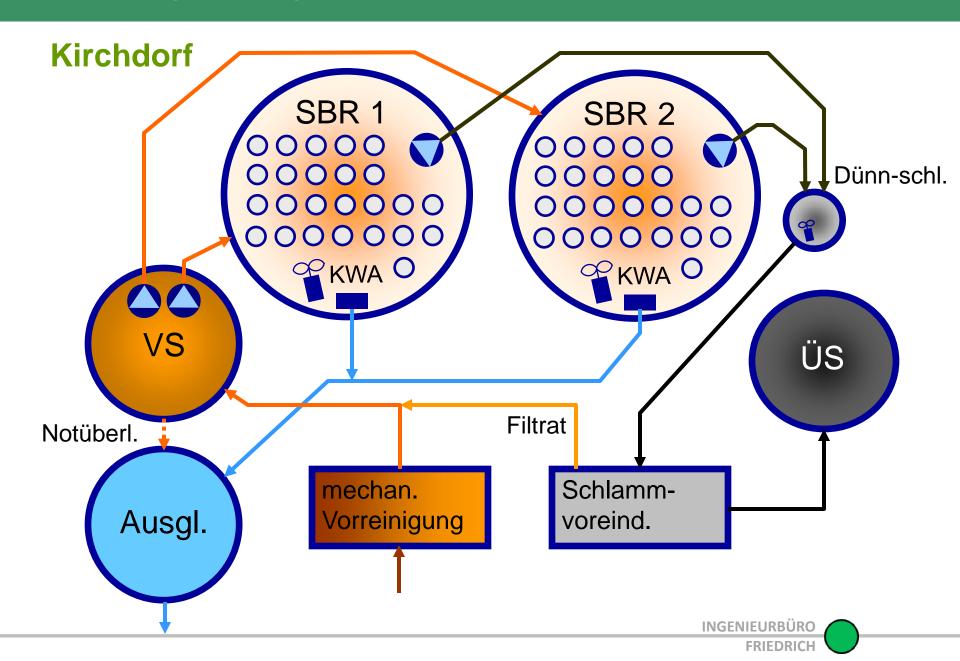

- Zur Vergleichmäßigung des Klarwasserablaufes
- Dort wo Vorflut zu klein oder zu großes Sauerstoffdefizit
- Durchfließen im freien Gefälle mit Abflußregler

Probennahmestelle

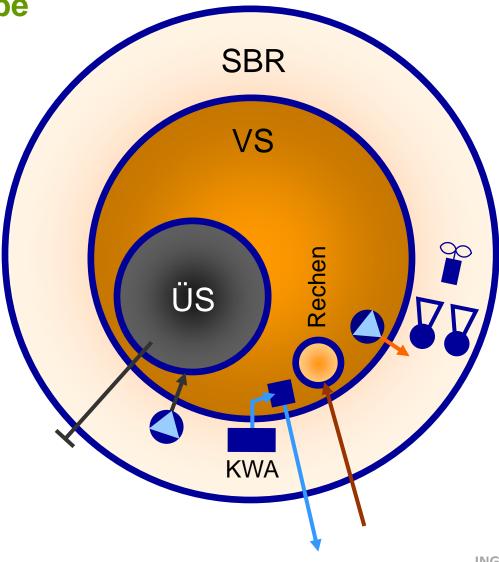

- Nur bei Klarwasserabzug steht Ablaufprobe zur Verfügung
- Probenahmestelle mit Klarwasserrückhalt (min. 20 l)
- Sollte leicht entnehmbar und zu reinigen sein.

SBR-Anlage < 1.000 EW



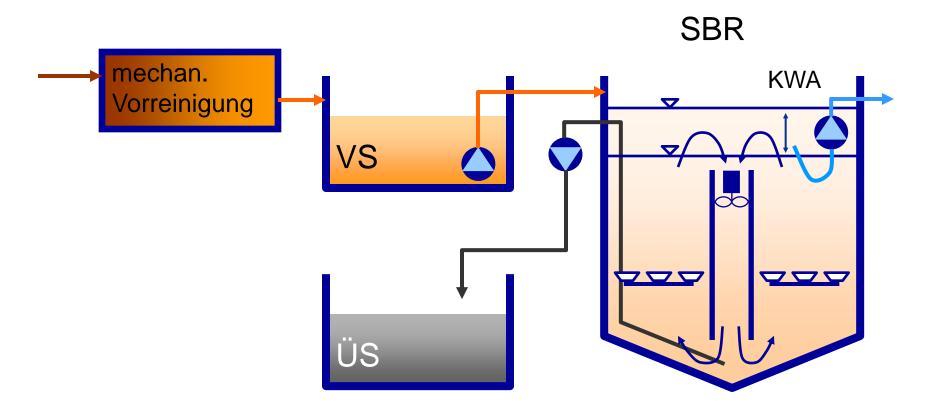

FRIEDRICH

SBR-Anlage > 1.000 EW

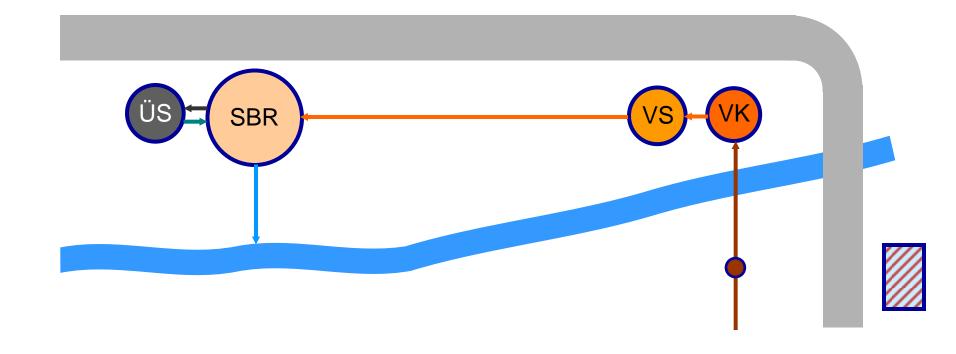

SBR-Anlage > 1.000 EW

Ausfaulgrube

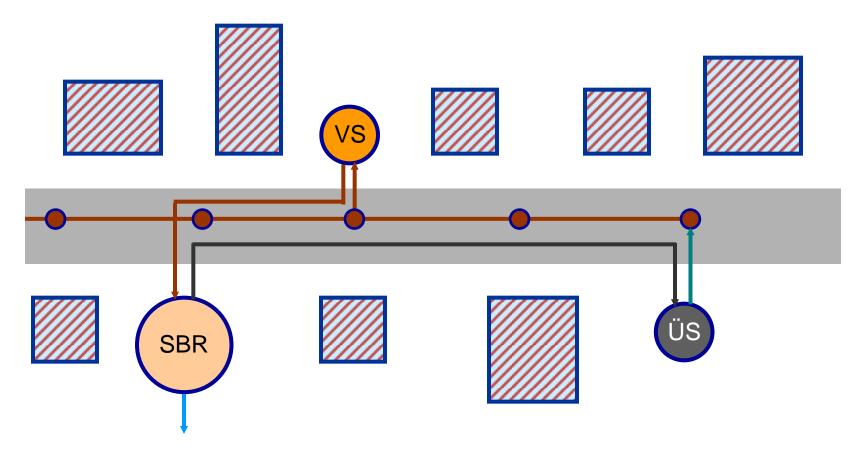
Borkow



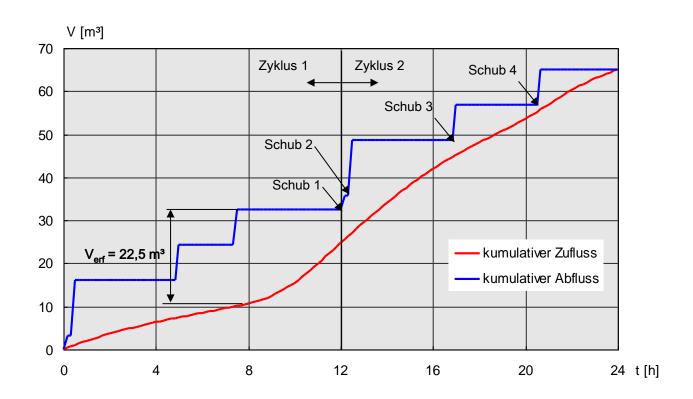
Emscherbrunnen


Neuglobsow

Dezentrale SBR-Anlage


Groß Strömkendorf

Dezentrale SBR-Anlage


Glasewitz

Vorspeicher

Speicherwirtschaft über Summenlinienverfahren

Vorspeicher

Der Vorspeicher kann um so kleiner werden,

- 1. Je ausgeglichener die Tagesganglinie ist,
- 2. Je mehr Füllungen mit wenig Abwasser über die Zykluszeit verteilt vorgesehen sind,
- 3. Je mehr Zyklen pro Tag durchgeführt werden und
- 4. Je mehr SBR-Becken beschickt werden.

Vorspeicher

- Die maßgebliche Abwassermenge für die Berechnung des Vorspeichers sollte auch in einem Trennsystem den Regenwetterfall berücksichtigen.
- Die Funktion als Zwischenspeicher bei Außerbetriebnahme des SBR-Beckens ist zu berücksichtigen.

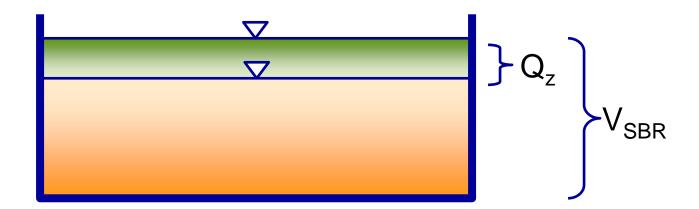
SBR-Becken

- Es gelten die Grundsätze der Berechnung von Belebtschlammanlagen nach DWA A 131.
- Dabei ist das Beckenvolumen zu suchen, das soviel Belebtschlamm aufnehmen kann, dass damit die Bemessungsschutzfracht zu reinigen ist.
- Bei SBR-Anlagen erfolgt die Reinigung des Abwassers nicht 24 h/d, da während der Sedimentation und des Klarwasserabzugs (ca. 2 h) "keine" Reinigung erfolgt.

SBR-Becken - biologisch

Das Beckenvolumen muss demnach vergrößert werden:

$$V_{SBR} = V_{BB} \cdot \frac{t_z}{t_R}$$


 Bei 1 h Sedimentation und 1 h Klarwasserabzug ergibt sich eine Vergrößerung des Reaktionsvolumen von

n-Zyklen pro Tag	1	2	3	4
t _z /t _R	1,09	1,20	1,33	1,50

SBR-Becken - hydraulisch

Tagesabwassermenge muss das SBR-Becken passieren können.

$$Q_z = \frac{Q_d}{n}$$
 $V_{aus} = \frac{Q_z}{V_{SBR}} \cdot 100 \%$

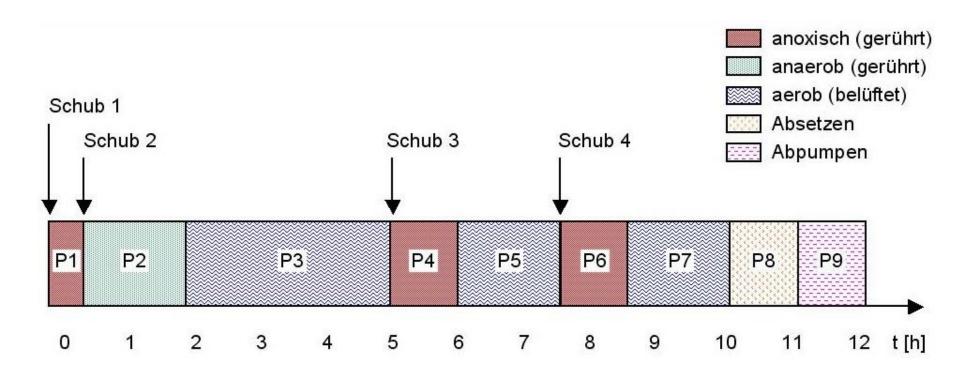
SBR-Becken - hydraulisch

Das Volumenaustauschverhältnis V_{aus}:

- hängt besonders vom Schlammalter und der Tagesabwassermenge bzw. Zyklusabwassermenge ab.
- wird durch den Schlammspiegel nach der Sedimentation bzw. untere Position des Dekantes begrenzt.
- > 40% sind nicht zu empfehlen.
- Bei kommunalem Abwasser ergibt sich ein V_{aus} von ca. 20%.

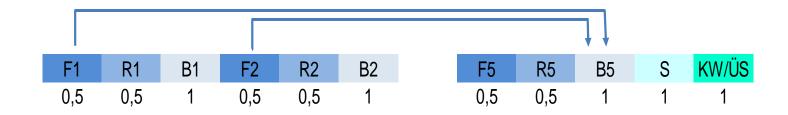
Starres Zykluszeitprogramm

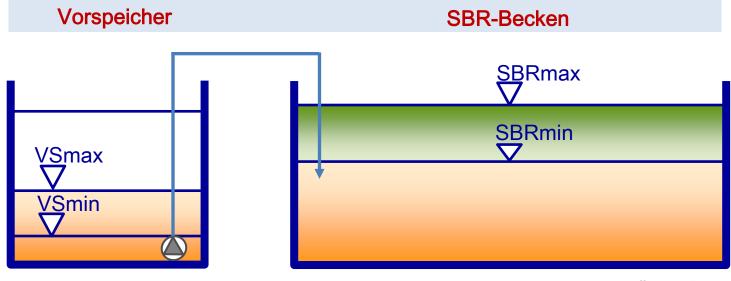
- Mit festem Bezug zur Tageszeit
- Konstante Zyklusdauer
- Füllung des SBR-Beckens richtet sich nach der aktuellen Abwassermenge.
- Läuft der Kläranlage im Extremfall kein Abwasser zu, so wird der Reinigungszyklus trotzdem durchgeführt.



Flexibles Zykluszeitprogramm

- Zyklusbeginn und Zyklusdauer nicht feststehend.
- Zyklusbeginn z.B. bei einem bestimmten maximalen Füllstand im Vorspeicher.
- Vor Erreichen dieses Füllstandes wird Belebtschlamm mit Pausenprogramm energiearm "unterhalten".
- Pausenlängen sollten nicht zu lang sein, was über V_{aus} einstellbar ist.


Flexibles Zykluszeitprogramm


Vorzugslösung IBF

- ZZP: Arbeitsphase, Sedimentation und KWA+ÜSA
- Arbeitsphase: 4 Arbeitsschritte
- Arbeitsschritt: Füllen, Belüften, Rühren

Vorzugslösung IBF

- Wenn schon bei "Füllen 1" der Wsp. SBR_{max} erreicht,
 Sprung zu Belüften 4.
- Während "Füllen" wird Vorspeicher wie ein Pumpwerk betrieben.

Vorteile

- Verkürzung des Zyklus bei vorzeitiger Vollfüllung des SBR
 - → Dadurch Erhöhung des hydraulischen Durchsatzes
- Einfaches ZZP ohne verschiedene Modi
 - → Dadurch keine Wartezeiten*
- Vorspeicherpumpen halten den Wsp. im Vorspeicher stets niedrig.
 - → Dadurch große hydraulische Reserven

^{*} Bei mehreren SBR sind jedoch Wartezeiten nicht zu vermeiden

Regelung der Sauerstoffkonzentration

- Am Anfang einer Belüftungsphase ist die Sauerstoffzehrung wesentlich größer als am Ende dieser Phase.
- Für eine Regler ist es relativ schwer, die Drehzahl der Gebläse bedarfsgerecht zu regeln.
- Besser ist eine Zweipunktregelung.
- Als Grenzen sind 0,8 und 1,5 mg O₂/I ausreichend.

Regelung der Sauerstoffkonzentration

Vorteile der Zweipunktregelung:

- Frequenzumrichter (FU's) können entfallen.
- Energetische Verluste durch FU's (1 3 %) entfallen
- Die Beaufschlagung der Belüfter ist stets konstant und damit berechenbar.
- Sauerstoffzehrungsrate einfach messbar.

Druckentlastung

- Durch Absenken des Wasserspiegels entsteht ein Überdruck in der Luftleitung.
- Überschreitet dieser Überdruck den Öffnungsdruck der Membranen, so kommt es zum Ausperlen von Luftblasen, die Schlammflocken nach oben reißen.
- Durch Öffnen eines Magnetventils an der Luftleitung kann dieser Flotationseffekt unterdrückt werden.

Detektieren Schlammspiegel

- Erreicht der Klarwasserabzug (KWA) den Schlammspiegel, so gelangt Belebtschlamm in den Kläranlagenablauf.
- Um stets eine definierte Klarwasserzone zu schaffen, wurde TS-Sensor unter dem KWA installiert.
- Bei Eintauchen des Sensorkopfes in den Schlammlayer, wird Überschussschlammabzug eingeleitet.

Detektieren Schlammspiegel

Mit dieser Regelung werden drei wichtige Ziele erreicht:

- Gleichbleibende Schlammmenge im SBR-Becken (für ISV = konstant)
- Der Klarwasserabzug hällt Abstand vom Schlammspiegel.
- Der Überschussschlammabzug wird automatisiert und vergleichmäßigt.

Resümee

- SBR-Technik hat sich in Deutschland etabliert
- Dominiert die Verfahrenstechnik von kleineren Kläranlagen
- Lässt sich durchaus gut bei großen Kläranlagen umsetzen
- Bei der Dimensionierung sind hydraulische Aspekte zu berücksichtigen
- Steuerungs- und Regelungskonzepte sind vielfältig

DWA Praxisseminar - Fachhochschule Potsdam - 2018

Vielen Dank für die Aufmerksamkeit!

